
acmqueue | september-october 2016 1

networks

T
he 2008 publication of “OpenFlow: Enabling
Innovation in Campus Networks” introduced
the idea that networks (originally campus and
enterprise networks) can be treated more
like flexible software rather than inflexible

infrastructure, allowing new network services and bug
fixes to be rapidly and safely deployed.7

Since then many have shared their experiences using
SDN (software-defined networking) and OpenFlow
in wide area and data center networks, including at
Google.10 This article returns to enterprise and campus
networks, presenting an open-source SDN controller for

Using OpenFlow
and DevOps
for rapid
development

JOSH BAILEY AND STEPHEN STUART

1 of 15 TEXT
ONLY

Faucet
Deploying
SDN
in the
Enterprise

acmqueue | september-october 2016 2

networks

such networks: Faucet. The Faucet controller provides a
“drop-in” replacement for one of the most basic network
elements—a switch—and was created to easily bring the
benefits of SDN to today’s typical enterprise network.5

SDN enables such safe and rapid development and
deployment of network features through automated
testing of both hardware and software, without time-
consuming manual lab testing. As described here, a
complete control-plane upgrade can be done, while the
network is running, in a fraction of a second.

Security of networks is a concern for all network
operators and users. A zero-day attack on the network
itself is especially worrisome because it can impact
the security of all users and services on the network.
Therefore, it is critical that network operators have a
way of responding rapidly, both to deploy new security
features or mitigate vulnerabilities in advance of an attack
and to restore a network currently undergoing an attack
as quickly and completely as possible, with as little risk as
possible. SDN builds this ability to change and respond into
the network itself at a very low level, which is beyond the
reach of an external security device such as a firewall.

Faucet has been tested, and it performs. It has
been deployed in various settings, including the Open
Networking Foundation, which runs an instance of Faucet
as its office network. Faucet delivers high forwarding
performance using switch hardware, while enabling
operators to add features to their networks and deploy
them quickly, in many cases without needing to change (or
even reboot) hardware. Furthermore, it interoperates with
neighboring non-SDN network devices.

2 of 15

acmqueue | september-october 2016 3

networks

Faucet was built on the OpenFlow 1.3 standard.8
Without the availability of commercial hardware
supporting this standard, it would not have been possible.
Multiple vendors now ship hardware that supports
OpenFlow 1.3, specifically with support for multiple flow
tables and IPv6. To minimize vendor-specific logic in the
controller, vendors were encouraged to support key
features in the OpenFlow 1.3 standard in a consistent way.
This reduced initial development and support cost, and it
simplified bug reporting and automated testing.

While SDN as a technology continues to evolve
and become even more programmable (e.g., with the
P4 programming language), Faucet and OpenFlow 1.3
hardware together are sufficient to realize benefits today.
This article describes specifically how to take advantage
of DevOps practices (“push on green”6) to develop and
deploy features rapidly. It also describes several practical
deployment scenarios, including firewalling and network
function virtualization.

MANAGEMENT OF ENTERPRISE NETWORKS TODAY
Many enterprise networks consist of multiple layers
of switches, often with VLANs to partition users into
different administrative domains (for example, sales
separated from engineering). Connected to these switches
is a diverse range of appliances and devices9 required
to manage the network and implement security policy,
sometimes requiring complex and fragile forwarding
policies to put them in the path of packets. Non-SDN
switches are not programmable (by definition), so their
forwarding and security policy is defined by what each

3 of 15

acmqueue | september-october 2016 4

networks

vendor’s proprietary configuration language provides. In
some cases, an external system, such as an IDS (intrusion
detection system), can make coarse changes to a network
to implement dynamic security policy (e.g., disable a host
port if the IDS determines that a host on that port has
been infected with malware).

Today’s network operators are responsible for
administering and integrating that wide range of
appliances and devices, and it may be difficult to implement
a specific security policy if the available devices do not
have the necessary features to achieve the desired policy
result. To operate and maintain a secure network with
inflexible tools requires considerable skill and effort, and
since the network cannot be programmed, opportunities to
automate are limited. This is especially true when vendors
either do not provide programmability or provide only
proprietary automation technologies that operate best on
a particular vendor’s equipment.

DEPLOYING FAUCET IN TODAY’S ENTERPRISE NETWORKS
To realize the benefit of SDN you have to be able to deploy
it. Deployment has to be easy and, ideally, incremental.
To fit these real life requirements, Faucet was designed
to replace a conventional non-SDN switch, one for one,
as shown in figure 1, realizing the benefits of SDN in that
network without necessitating notable infrastructure
changes.

Faucet is deployed as a unit of two systems: a controller
host (typically a host running Ubuntu Linux, running the
Faucet controller application) and an OpenFlow switch
(e.g., an Allied Telesis x930 series switch), which are

4 of 15

acmqueue | september-october 2016 5

networks

directly connected. The controller takes one configuration
file, which describes which ports are in which VLANs
(or if a port is in a VLAN trunk). The entire installation
process, including creation of the configuration file (which
resembles a non-SDN switch configuration file), has been
reported to take only minutes in recent deployments.

Stopping at simple deployment, however, won’t realize
meaningful benefits. In fact, replacing a single switch with
a controller machine (note that one controller machine can
control many switches) and a switch takes more space and
power. The benefits come from having the controller and
control software both separate from the switch hardware,

5 of 15

non-SDN firewall

non-SDN
switch

hosts

OpenFlow
control

link

NFV
offload
link

FAUCET controller
+ NFV/firewall host

OpenFlow
switch

hosts

FIGURE 1: Non-SDN and Faucet SDN Comparison

1

acmqueue | september-october 2016 6

networks

and entirely within the network operator’s control, rather
than being a closed vendor provided appliance that cannot
be reprogrammed.

Controllers can be numerous for high availability—
Faucet supports redundant controllers—and as big or as
small as required. Faucet is run in production at one site
using a Raspberry Pi as a controller, which is practical
because with Faucet the switch hardware does the
forwarding—the controller does not have to be very
powerful, because it does not have to forward traffic,
leaving that to the higher-performance switch hardware.

PUSH CODE TO THE NETWORK ON GREEN
“Push on green” refers to a philosophy of being able to
create and test software in an automated fashion such that
it is easy to detect a “green” condition of code—ready to
roll out with as few bugs as possible.6 Google has published
some of its strategies for deploying and managing
large reliable software systems in the recent book, Site
Reliability Engineering.3 SDN promises to help apply these
strategies to networking software.

In keeping with this, the Faucet software stack includes
a unit-testing framework,2 so that new features can be
developed with unit tests, and tests can be run against
both simulated (Mininet virtual network) and hardware
switches. Tests detect “green,” and the operator can “push
on green” with confidence that the system will work as
tested. This accomplishes both feature-level and system-
level testing—it is possible to catch system and integration
problems at development time, well before deployment or
even lab testing.

6 of 15

acmqueue | september-october 2016 7

networks

As an example, many non-SDN switches implement
unicast flooding as part of the learning process,4 so that
the switch can discover which hosts are connected to
which ports. Learning works in this way: a host sends an
Ethernet packet with a destination unknown to the switch,
and the switch floods the packet to all ports in the hope
that the intended destination host will respond. This may
not be desirable for security reasons, and in many non-SDN
switches this behavior is hard-coded.

A Faucet feature that implements switch learning
exclusively from ARP (Address Resolution Protocol) and
neighbor discovery packets relieves Faucet from the need
to flood unicast packets. The feature was implemented,
tested with unit tests that included hardware and
software, and pushed to github. On the controller machine,
the operator ran “git pull” and then “service faucet restart,”
accomplishing a complete controller upgrade and restart.
Forwarding was interrupted for less than one second.
Other features involving changes to the controller, even
more ambitious features, can be deployed the same way.

As shown in figure 2, Faucet implements all its features
using OpenFlow 1.3 and multiple tables, and today
implements VLAN switching, IPv4 and IPv6 routing (both
static and via the BGP routing protocol), ACLs (access
control lists), port mirroring, and policy-based forwarding.
The switch does all the forwarding, and no “hybrid” mode
functionality is used on the switch. Hybrid mode is where
a switch uses a mixture of nonprogrammable, non-SDN
local processing, together with OpenFlow control. Faucet
does not need such switch-local processing, and in our
experience hybrid mode increases complexity and limits

7 of 15

acmqueue | september-october 2016 8

networks

programmability by introducing the possibility of conflict
between local and OpenFlow control.

A tiny fraction of traffic is copied to the controller
so it can learn which hosts are on which ports and so
the controller itself can resolve next hops (if routing
is configured). The controller is generally idle unless
hosts are added or move between ports (in which case
the controller reprograms the pipeline as appropriate).
Faucet has basic protection against control-plane attacks
(for example, limiting spoofed Ethernet MAC addresses).
Because the pipeline is entirely programmed by the
controller, the network operator is free to make arbitrary
changes to forwarding behavior by changing the controller
software.

When the hardware switch boots, it establishes an

8 of 15

0:VLAN 1:ACL 2:ETH_SRC

controller controller

controller

5:ETH_DST
3:IPv4_FIB

4:IPv6_FIB

6:FLOOD

packets
in

packets
out

packets
out

FIGURE 2: faucet’s all openflow pipeline 2

acmqueue | september-october 2016 9

networks

OpenFlow connection to the controller. The controller
provisions the initial pipeline, including expectations for
VLAN tags and any ACLs if configured, and adds “default-
deny” rules (all unknown traffic is explicitly dropped). When
a new host is detected, the switch sends a copy of the
Ethernet header to the controller and (if unicast flooding
is enabled) floods it to all other ports on the same VLAN or
(if unicast flooding is disabled) floods it only if the packet is
an IPv6 neighbor discovery or ARP packet. The controller
then programs flows to cause future packets from this
Ethernet source address to be forwarded by the switch.
These flows periodically time out and are refreshed by
the controller as necessary, which allows the switch to
conserve resources.

ROLE OF THE CPN AND SECURITY OF THE CONTROL PLANE
The CPN (control-plane network) connects the controller
machine and the switch on a dedicated port. In many
deployments this is simply a good-quality three-foot
Ethernet cable, which has been observed in production to
be no less reliable than the internal connection between
the CPU and data plane in a non-SDN switch. Indeed, should
that three-foot cable fail, it can easily be replaced. In larger
deployments where one controller machine controls
several OpenFlow switches, the three-foot cable can be
replaced by several Ethernet cables and a good-quality non-
SDN switch. The controller connection between the switch
and the Faucet controller can be secured with certificates
or even MACsec-capable interfaces. (MACsec is the IEEE
802.1AE MAC security standard.)

Many switches allow configuration of the handling

9 of 15

acmqueue | september-october 2016 10

networks

of the control connection being lost: “fail secure” (keep
forwarding and using currently programmed flows until
they expire) or “fail standalone” (revert to being essentially
a nonprogrammable switch). Faucet implements expiry
times on all flows, which causes forwarding to cease if no
controller can be reached for a configurable period, so
Faucet expects the switch to be in “fail secure” mode. It is
possible to replace the CPN (and switch), and this has been
done in production without interrupting forwarding if done
within the flow expiry time. (It is generally not possible, on
the other hand, to replace the back plane in a standalone
non-SDN switch without interrupting forwarding.)

POWERFUL CONTROLLERS ARE OPPORTUNITIES
In a non-SDN switch the embedded CPU is generally
power- and cost-optimized. With Faucet, however, the
controller can be a general-purpose computer or, indeed,
a powerful server-class computer. This represents an
opportunity to use the controller machine hardware as an
open-source network coprocessor or an alternative to a
firewall appliance—the Faucet switch effectively provides
lots of extra ports to a powerful machine.

In the first author’s own deployment1 the controller
machine also runs Ubuntu’s ufw (uncomplicated firewall)
package, which implements NAT (network address
translation) and firewalling; Bro (https://www.bro.org/),
which is an IDS (intrusion detection system); and Internet
Software Consortium’s dhcpd (Dynamic Host Configuration
Protocol daemon) to assign addresses dynamically. All
three VLANs are trunked to a dedicated port on the
controller machine. Faucet has ACLs on the host ports,

10 of 15

acmqueue | september-october 2016 11

networks

which prevent hosts from spoofing the controller’s IP
addresses in each VLAN (so that proxy ARP attacks are
not possible). Faucet ACLs operate across layers, so it is
possible for an ACL entry to match, for example, Ethernet
type, as well as IP address and MAC address.

More complex configurations are possible; for
example, it would be possible, via the controller’s trunk
port, to assign a Linux container to each VLAN and run
a separate iptables chain for every switch port. This
achieves complete isolation and complete security policy
customization on a port-by-port basis, without requiring
any changes to the switch.

Faucet departs from common current network
management practice in that it does not implement SNMP
(Simple Network Management Protocol). Instead, the
Faucet controller pushes statistics (bytes, packets, in
and out from each port) to an external system. Faucet
supports InfluxDB (https://influxdata.com/), which is an
open-source time series database. Using Faucet together
with an open-source visualization system, Grafana (http://
grafana.org/), it is possible to construct dashboards and
run queries on current and historical data, as shown in
figure 3. Faucet can also produce a JSON (JavaScript
Object Notation) log of statistics that could be translated
and input into another system.

NORTHBOUND API
The SDN community continues to debate APIs that
business, security, or other applications external to
the controller should use to control the controller (for
example, to ask the controller to prioritize a given user’s

11 of 15

acmqueue | september-october 2016 12

networks

traffic on the network). Faucet does not have a “one true”
northbound API, because a generic API is not required. An
operator can develop an application on top of Faucet that
delivers Faucet a new configuration file and asks Faucet
to apply it (e.g. to change a user VLAN). Or, an operator
might directly modify the controller code to add the
desired feature, or add some other API convenient to the
operator’s needs (for example, to integrate the Bro IDS).

RELATIONSHIP TO OTHER SDN CONTROLLER PROJECTS
The SDN community has several controller projects. Two
well-known ones are ODL (OpenDaylight, https://www.
opendaylight.org/) and ONOS (Open Network Operating

FIGURE 3: Using Faucet and grafana to construct dashboards and run queries

12 of 15

3

acmqueue | september-october 2016 13

networks

System, http://onosproject.org/). Both controllers have
many ambitions and have already served as technology
demonstrators. As operational experience with SDN in
the wider industry is still in its early stages, however, it is
important to provide low-risk, incremental migration paths
between today’s networks and those aimed for by ODL and
ONOS. Faucet could provide one such path and help inform
the ongoing design of new network abstractions and
programming frameworks. Furthermore, today’s network
operator community has traditionally not written its own
software. While DevOps may be mainstream for many
service operators, it is not for network operators, and it is
important to make the benefits of such practices directly
relevant to them.

CONCLUSION
The benefits of SDN have been difficult to realize because
of a lack of software that is accessible to today’s network
operator community. While still a very simple system,
Faucet could be useful enough to operators that they may
take the next step toward migrating to SDN, enabling them
to adopt and enjoy the specific benefits of the rapid feature
development, deployment, and testing Faucet provides.

Downloading faucet
Faucet’s source code for development can be found at
https://github.com/REANNZ/faucet, or can be downloaded
at https://pypi.python.org/pypi/ryu-faucet/ (including
Docker images) for easiest installation.

13 of 15

https://github.com/REANNZ/faucet
https://pypi.python.org/pypi/ryu-faucet/

acmqueue | september-october 2016 14

networks

References
1. �Bailey, J. 2016. NFV/firewall offload with Faucet.

Faucet SDN; http://faucet-sdn.blogspot.co.nz/2016/05/
nfvfirewall-offload-with-faucet.html.

2. �Bailey, J. 2016. Unit-testing framework. Faucet SDN;
http://faucet-sdn.blogspot.co.nz/2016/06/unittesting-
hardware.html.

3. �Beyer, B., Jones, C., Petoff, J., Murphy, N. R., eds. 2016.
Site Reliability Engineering. O’Reilly Media.

4. �Cisco. 2016. Unicast flooding in switched campus
networks; http://www.cisco.com/c/en/us/support/docs/
switches/catalyst-6000-series-switches/23563-143.
html.

5. �Faucet; https://github.com/REANNZ/faucet.
6. �Klein, D. V., Betser, D. M., Monroe, M. G. 2014. Making

“push on green” a reality: issues and actions involved in
maintaining a production service. Research at Google;
http://research.google.com/pubs/pub42576.html.

7. �McKeown, N., et al. 2008. OpenFlow: enabling
innovation in campus networks. ACM SIGCOMM
Computer Communication Review 38(2): 69-74.

8. �Open Networking Foundation. 2013. OpenFlow
Switch Specification, version 1.3.3; https://www.
opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-
v1.3.3.pdf.

9. �Sherry, J., Ratnasamy, S. 2012. A survey of enterprise
middlebox deployments. Technical Report UCB/EECS-
2012-24. University of California at Berkeley; http://
www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-
2012-24.pdf.

14 of 15

http://faucet-sdn.blogspot.co.nz/2016/05/nfvfirewall-offload-with-faucet.html
http://faucet-sdn.blogspot.co.nz/2016/05/nfvfirewall-offload-with-faucet.html
http://faucet-sdn.blogspot.co.nz/2016/06/unittesting-hardware.html
http://faucet-sdn.blogspot.co.nz/2016/06/unittesting-hardware.html
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-6000-series-switches/23563-143.html
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-6000-series-switches/23563-143.html
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-6000-series-switches/23563-143.html
https://github.com/REANNZ/faucet
http://research.google.com/pubs/pub42576.html
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.3.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.3.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.3.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.3.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-24.pdf

acmqueue | september-october 2016 15

networks

10. �Vahdat, A. 2015. Pulling back the curtain on Google’s
network infrastructure. Google Research Blog; http://
googleresearch.blogspot.com/2015/08/pulling-back-
curtain-on-googles-network.html.

Related articles
The Road to SDN
An intellectual history of programmable networks
Nick Feamster, et al.
http://queue.acm.org/detail.cfm?id=2560327

OpenFlow: A Radical New Idea in Networking
An open standard that enables software-defined
networking
Thomas A. Limoncelli
http://queue.acm.org/detail.cfm?id=2305856

A Purpose-built Global Network: Google’s Move to SDN
A discussion with Amin Vahdat, David Clark, and
Jennifer Rexford
http://queue.acm.org/detail.cfm?id=2856460

JOSH BAILEY is a staff software engineer at Google, working
on network management and research projects for the past 11
years. He is based in Wellington, New Zealand.
STEPHEN STUART is a distinguished software engineer
at Google for the past 13 years, based in Mountain View,
California, USA.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

15 of 15

http://googleresearch.blogspot.com/2015/08/pulling-back-curtain-on-googles-network.html
http://googleresearch.blogspot.com/2015/08/pulling-back-curtain-on-googles-network.html
http://googleresearch.blogspot.com/2015/08/pulling-back-curtain-on-googles-network.html

